
  ISSN 2394-9716 

International Journal of Novel Research in Interdisciplinary Studies  
Vol. 8, Issue 3, pp: (15-39), Month: May – June 2021, Available at: www.noveltyjournals.com 

Page | 15 
Novelty Journals 

 

REVIEW ON PLANT DEFENSE 

MECHANISMS AGAINST INSECT PESTS 

Worku Abebe 

Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center (HARC), P.O. Box 2003, Holeta, 

Ethiopia 

E-mail: workuabebe2005@gmail.com, Tel: +251913317619 

Abstract: As primary producers, plants are under constant pressure to defend themselves against potentially 

deadly pathogens and herbivores. Insects pose a great threat to plants and plants in turn, withstand to insect 

attack through a wide diversity of defensive mechanisms. Interactions between plants and insect herbivores are 

important determinants of plant productivity in agriculture. In response to attack, plants have evolved a range of 

defenses to reduce the threat of injury and loss of productivity. Plant characters that confer herbivore resistance 

prevent or reduce herbivore damage through expression of characters that deter pests from settling, attaching to 

surfaces, feeding and reproducing, or that reduce palatability.  

Plant defensive mechanisms are either produced constitutively or in response to plant damage, and affect feeding, 

growth, and survival of herbivores. Plant defense mechanisms against insect herbivores are broadly categorized 

into direct and indirect defense mechanisms. Direct defense is involved both physical and biochemical barriers 

which synergistically obstruct insect herbivore’s growth, development, reproduction, etc. The indirect defense 

mechanisms have no direct impact on insect herbivores but suppress pests by releasing volatile compounds that 

attract natural enemies of the herbivores. Overall categories of direct plant defenses against insect herbivores 

include limiting food supply, reducing nutrient value, reducing preference, disrupting physical structures, and 

inhibiting chemical pathways of the attacking insect. Major known defense chemicals include plant secondary 

metabolites, protein inhibitors of insect digestive enzymes, proteases, lectins, amino acid deaminases and oxidases. 

In this review, the two broad categories of plant defense mechanisms against insect pests: direct and indirect 

defense mechanisms have been widely discussed.   

Keywords: Insect pests, Herbivory, Plant defence, direct defense, structural defense, biochemical defense, indirect 

defense, natural enemy. 

1.   INTRODUCTION 

Plants can have different types of interactions with insects, such as antagonistic interactions with herbivores and 

mutualistic interactions with carnivorous and pollinating insects. However, the impact of insect herbivores on their host 

plants has been known since ancient times (Strong et al., 1984; Herms & Mattson, 1992) and a lot of research has been 

done on it (Coulson & Witter, 1984; Fernandes, 1987). Due to insect pests, there is a huge yield loss each year around the 

world (Oerke 2006; Singh and Kaur 2018; Sibanda et al., 2000). Plants and insects have co-evolved continuously since 

the first appearance of phytophagous insects in the history of life and insect–plant co-evolution has been ongoing for 400 

million years (Labandeira 2013).  

During the long course of interaction and coevolution with herbivorous insects, plants have evolved a broad range of 

defense mechanisms to counter insect attacks (Zhao et al.,2009; Karban 2011). Today, various morphological, and 

biochemical, plant defense mechanisms are known (Howe and Jander 2008). Plant defense mechanisms can be pre-
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formed (constitutive) and/or inducible. Constitutive defenses include physical and chemical barriers that exist before 

insect attack, whereas inducible defenses include defensive mechanisms that become activated upon insect attack 

(Miranda et al., 2007; Steppuhn and Baldwin, 2007). Inducible defense mechanism in plants is one of the important 

components of pest control in agriculture, and has been exploited for regulation of insect herbivore population (Tibebu, 

2018; Howe and Jander, 2008; Agrawal, 2011). Plant defense mechanisms are categorised into direct and indirect defense 

mechanisms. Direct defense mechanisms are plant characters that directly affect the attacker insects (Kessler, A. and 

Baldwin, 2001) whereas indirect defense mechanisms are plant characters that do not directly affect the attacker insects 

but attract natural enemies of the attacker insects which finally leads to suppression of the insect population, and as a 

result, reduce plant damage caused by the insect (Arimura et al., 2009; Karban, 2011)Plant characters that attract natural 

enemies of herbivore insects arevolatile organic compounds produced and released by plants during insect attack while 

direct plant defense include various morphological and biochemical plant characters that negatively affect insect 

preference such as host plant selection, oviposition, feeding behaviour or insect performance such as growth rate, 

development, and reproductive success; resulting in increased plant fitness in a hostile environment (Dudareva et al 2006; 

Usha and Jyothsna, 2010). Morphological defense mechanisms include structures such as trichomes, surface waxes, tissue 

toughness, cell walls and cuticle thickening, plant colour, plant shape and size as well as secretory structures and ducts for 

lattices or resins whereas biochemical defense mechanisms include secondary metabolites, digestibility reducing proteins, 

and antinutritive enzymes (Hanley et al., 2007; Howe and Jander, 2008; Karban, 2011). Moreover, synergistic effect 

among different defensive components enhances the defensive system of plants agains insect pests (Tibebu, 2018). 

2.   PLANT DEFENSE MECHANISMS AGAINST INSECT PESTS. 

Plants have morphological structures, biochemicals and proteins to defend themselves from herbivore attack. These plant 

defense mechanisms have toxic, repellent, and/or antinutitional effects on the herbivores (UshaandJyothsna, 2010). Plants 

defend the herbivores attack both directly by affecting host plant preference or survival and reproductive success and 

indirectly through other species such as natural enemies of the insect pests (Howe and Jander, 2008; Dudareva et al., 

2006; Arimura et al., 2009). Direct defenses are mediated by plant characteristics that affect the herbivore’s biology such 

as mechanical protection on the surface of the plants or production of toxic chemicalsthat either kill or retard the 

development of the herbivores (Hanley et al.,2007). Indirect defenses against insects are mediated by the release of a 

blend of volatiles that specifically attract natural enemies of the herbivores and/or by providing food and housing to 

enhance the effectiveness of the natural enemies (Arimura et al., 2009). Generally, synergistic effect among different 

defensive components enhances the defensive system of plants against the insect pests (Tibebu, 2018).  

2.1. PLANT DIRECT DEFENSE MECHANISMS 

The term direct defense is used when plants produce physical barriers against insect herbivores, or compounds that exert 

repellent, antinutritive or toxic effects on the herbivores themselves. Plants have evolved direct defenses such as 

biochemicals that could be both inducible and part of the constitutive defense, inducible defense proteins and various 

morphological features (Tibebu, 2018). Direct defense includes the activation or production of antifeedants, such as toxins 

and inhibitors of digestion, which negatively affect the growth and/or survival of herbivores (Howe and Jander, 2008).  

2.1.1. Morphological defense mechanisms 

Structures of plants are the first line of defense against insect pests (Hanley et al., 2007; Agrawal et al., 2009). Plant 

Structural defenses include morphological and anatomical characters that confer a fitness advantage to the plant by 

directly deterring the herbivores from feeding (Agrawal et al., 2009. Morphological characters interfere physically with 

locomotors mechanisms especially with the mechanism of host selection, feeding, ingestion, digestion, mating or 

oviposition. These may also indirectly cause nutritional imbalances either through restrictive feeding because of texture or 

shape which would reduce the amount of nutritive material being ingested, or through limiting the digestibility and 

utilization of food by insects (Howe and Jander, 2008; Hanley et al., 2007; Karban, 2011).  

The morphological structures of a plant which confer resistance to pests are trichomes on plant surface, surface waxes, 

hardness of plant tissues, thickness of cell walls and cuticle, anatomical modifications, silica content, colour, shape and 

size (Amjad et al., 2009; Chamarthi et al., 2010; Handley et al., 2005). 
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2.1.1.1. surface waxes  

Waxes protect plant surface against desiccation, insect feeding and diseases (Engelberth, 2002). They affect feeding 

behaviour of insects, particularly the setting of probing insects, acting as phagostimulants or feeding deterrents (Norris 

and Kogan, 1980) and also increase the slipperiness, which hinder non-specialized insects from populating the leaf 

surfaces (Schaller and Howe, 2008). It has been reported that due to the presence of waxes on plant surface the sense 

organs on the insect tarsi and mouth parts receive negative chemical and tactile stimuli from the plant surface resulting in 

resistance of the plant to insect attack (Blenn et al., 2012). It was also reported that leaf epicuticular wax is an important 

factor that affects the rate and pattern of feeding of flea beetle (Phyllotreta cruciferae) in Brassicaceae (Bodnaryk, 

1991)and neonate larvae of Plutella xylostella had non-preference for leaf wax charcteristic in glossy leaved resistant 

Brassica oleracea L.Eigenbrode and Shelton(1990) displayed that Diamond backmoth (Plutella xylostella) larvae had 

non-preference for leaf wax in glossy-leaved resistant Brassica oleracea. Similarly, it has been found that glossy lines of 

Brassica species had low population of cabbageworm (Artogeia rapae), cabbage aphid (B. brassicae) and P. xylostella 

(Stoner, 1990). It has also been observed that in bloom cultivars, the culm is heavily waxed and the neonate larvae face 

considerable difficulty in climbing because their prolegs stuck in the wax and never reach the feeding site (Bernays et al, 

1983). Anstey and Moore (1954) reported that broccoli with waxy leaves was more resistant to Phylotrata olbionica than 

broccoli with a glossy leaves. It has also been known that sugar cane stalk surface wax contributed to resistance against 

sugarcane borer (Eldana saccharina)(Rutherford and Staden, 1996). 2.1.1.2. trichomes 

Trichomes are outgrowths from the epidermis of leaves, shoots and roots (Upholf, 1962) and serve as morphological 

defense against insect pests (Johnson, 1975). They occur in several forms, shapes and sizes: straight, spiral, stellate, 

hooked, and glandular forms (Uphof, 1962; Johnson, 1975; Hanley et al., 2007). Trichomes are one of the most important 

morphological adaptations of plants against insect pests(Schaller and Howe, 2008). Trichomes can be divided into two 

distinct categories, glandu1ar and non-glandular(DE Candole,1841). They affect locomotion, attachment, shelter, feeding 

and survival of insects. For example, it has been reported that early first instar larvae of cereal leaf beetle (Oulema 

melanopa) were critically affected by trichomesof wheat plants (Schillinger and Gallun, 1968) and this caused greater 

mortality of the larvae (Kogan,1972). The mortality was owing to the fact that larvae had to eat the hairs to reach the 

epidermis and thus ingested large amounts of cellulose and lignin and this caused death of the young larvae due to 

unbalanced diet from cellulose and lignin (Schillinger and Gallun, 1968). In addition to unbalanced diet, the larvae were 

suffered with undigested hairs, some of which pierced the gut wall of the insect (Kogan, 1972; Webster, 1975).  

Trichome density and length play important role in plant defense against insect pests. For instance, research reports 

indicated that density of hairs on cotton affected the feeding behaviour of cotton aphids (Aphis gossypii) by reducing the 

feeding time and increasing the first non-feeding time and penetration frequency (Jiang andGuo, 1996) and was found that 

weight gain and leaf feeding capacity of Spodeptera littoralis and H. armigera was smaller on hairy cultivars than on the 

glabrous cultivars (Navon et al., 1991). 

Research results showed that, glandular trichomes can play role in defending insect pests. For example, Kisha(1984) 

stated that Bimesia tabaci was trapped and killed by the glandular hairs of tomato leaves. Similarly, Kriha (1984) reported 

that adults of whitefly (Bemisia tabaci) were found trapped by the glandular hairs on tomato leaves where they come in 

contact with the glandular exudates and become immobile due to the hardening of these exudates (Kriha, 1984)and the 

exudates accumulated on the tarsi, immobilized and caused others to fall off the plants. Moreover, the biochemicals 

produced by glandular trichoms inhibit movement of insects on plant surfaces and act as repellents and deterrents, disrupt 

feeding, affect development, reproduction and survival of insects (Webster, 1975).  For example, resistance of wild 

tomato to Helicoverpa zea (Dimochand Kennedy, 1983) and Leptinotarsa decemlineata is attributed to high levels of 2-

tridecanone present on the tips of trichomes. Similarly, glandular trichomes in Lycopersicon hirsutum produce 

biochemical 2-tridecanone and 2-undecanone which is toxic to Spodoptera enigua (Lin et al., 1987).  

There are also reports that indicate the role of hooked trichomes in plants defense mechanisms against insect pests. For 

instance, (Mizukoshi and Kakizaki, (1995) reported that mortality of early instar aphids was higher on cultivars with 

heavily hooked trichomes.In the same way, Richardson (1943) observed that bean leaf hooked hairs immobilized and 

starved bedbugs to death. Similarly, the hooked trichomes of Passiflora adenopoda (Passifloraceae) provide a specific 

and effective defense against its major class of herbivore, the butterfly larvae (Gilbert, 1971). The host hairs entrap and 

kill larva by a combination of starvation and loss of hemolymph caused by numerous puncture wounds in the larval 

integument.  
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Moreover, Vanduyn et al. (1972) reported that trichomes can influence the attachment of insects to plant leaf surface and 

he observed that the Mexican bean beetle (Epilachna varivestis) falls off leaves without trichomes. Other studies have 

also shown that several insects prefer hairy leaves for attachment (Lukefahr et al., 1970).  

Different research reports indicated that trichomes have both positive and negative effect on oviposition of insect pests 

(Webster 1975). For instance, females of Hessian fly (Mayetiola destructor) laid fewer eggs on the pubescent leaved 

wheat than on the glabrous leaved (Roberts et al., 1979) and cereal leaf beetle (O. melanopus) was found to oviposit less 

on pubescent wheat than glabrous wheat leaves (Lampert et al., 1983). Moreover, reports has been displayed that wheat 

varieties with dense and long trichomes were highly resistant to oviposition (Hoxie et al., 1975) and in the same fashin, 

trichomes on sugarcane plants negatively affected the oviposition of sugarcane borer (D. saccharalis) (Sosa, 1988) and it 

has been also found that the number of trichomes on leaves of maize cultivar deterred oviposition of corn earworm (C. 

partellus) (Kumar, 1992). Similarly, the presence of trichomes on leaf surface of sorghum was related to less frequency of 

oviposition by shoot fly (A. soccata) (Maiti et al., 1980). Likewise, alfalfa varieties with long glandular hairs were 

resistant to seed chalcid (Bruchophagus roddi) (Pierce, 1983) and in this manner, the apple codling moth preferred the 

glabrous leaf for oviposition over the pubescent leaf surface (Plourde et al., 1985). Likewise, Sharma and Singh(2001) 

observed that hair density and hair length had negative correlation with the number of eggs laid by leafhopper (A. 

biguttula) on malvaceous plants. In the same way, in okra, A. biguttula population decreased with an increase in hair 

density on lamina and such varieties were less preferred for oviposition.  

However, trichomes may in some cases enhance oviposition by some insect species resulting in the build-up of pest 

population. For example, glabrous cotton strains were less favourable for egg laying than pubescent strains for oviposition 

by H. zea and H. virescens (Stadelbacher and Scales, 1973) 

Generallytrichomes have a great role in defending plants against insect pests. For instance, research results showed that 

resistance in Brassica juncea to mustard aphid (Lipaphis erysimi) was correlated with hairiness of leaf surface (Lal et al., 

1999) and in pigeon pea, resistance of pods to H. armigera larvae was due to high density of trichomes (Romies et al., 

1999). In the same way, tolerance in plants to flea hopper (Pseudatomoscelis seriatus)increased with increase in trichome 

density. Trichome density on sorghum leaves imparted resistance to shoot flies (A.soccata). Hairiness in cotton increased 

resistance to a number of insects such as jassid (Amrasca spp.) (Evans, 1965), cotton aphid, (Aphis gossypii) (Kamel and 

Elkassaby, 1965), cotton leafworm (Spodoptera littoralis) and spider mites (Tetranychus spp.)(Abdul Nasr, 1960), 

bollweevil, (Anthonomus grandis) (Stephens and Lee, 1961) and pink bollworm, (P. gossypiella) (Smith et al., 1975). In 

the same way, reports showed  that cotton cultivars with trichomes on upper and lower leaf surfaces and petioles provide a 

mechanism of resistance to movement of newly hatched larvae of tobacco bud worm (Helicoverpa virescens) (Ramalho et 

al., 1994). Hairiness in cotton also confers resistance to Pectinophora gossypiella. 2.1.1.3. thickening of cell walls 

 Because of the deposition of liginin & celulose on the plant cell walls, tissue of plants become hard and tough and thus 

become resistant against insect pest tearining by mandibles or penetration by ovipositor of insect pests (Raupp, 2008). The 

cell walls of leaves are also reinforced during feeding (McNaughton and Tarrants, 1983) through the use of different 

macromolecules, such as lignin, cellulose, suberin and callose, together with small organic molecules, such as phenolics, 

and even inorganic silica particles (Schoonhoven et al., 2005). Roots eaten by insect herbivores exhibit extensive 

regrowth, both in density, as seen in T. repens eaten by Sitona lepidus (clover root weevil) (Care et al.,  2000), and in 

quantity, as observed in Medicago sativa (alfalfa) attacked by clover weevil (Sitona hispidulus)(Johnson et al., 2010). 

Tanton (1962) stated that feeding rates and larval growth of mustard beetle (Phaedon cochlariae) was comparatively less 

on tough turnip and Brussels sprout leaves. Likewise, Seed damage due to alfalfa seed chalcid (Bruchophagus raddi) was 

less in medicago species which had highly lignified pod-walls (Springer et al, 1990).It has also been known that 

sugarcane resistance against top borer (scirpophaga nivella) was due to the presence of higher deposition of liginin on its 

mid-rib (Verma and Mathur, 1950). Similarly, it was reported that the movement of Chilo partellus larval on sorghum 

leaves was resisted by toughness of the mid-rib (Kishore, 1991). Singal and Singh (1985) also reported that in chickpea, 

resistance to Callosobruchus maculatus and C. Chinensis was associated with roughness and toughness of the seed coat.  

2.1.1.2. laticifers and oleoresins 

Several plants contain networks of channels in vascular tissues called laticifers and resin ducts. Latex and resins are stored 

under internal pressure, and when the channels are broken, they are secreted and might entrap or intoxicate the herbivore. 
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Latex laticifers are found in more than 10% of the angiosperms, and are especially common in the tropics (Agrawal and 

Konno, 2009). Of the more than 50 latex producing plant families, Asclepias (milkweeds) is the one most studied. For 

instance, the latex of Cryptostegia grandiflora (rubber wine) may be transported 70cm upwards to the wounding site and 

when it is exposed to air it coagulates and then traps small insect larvae (Dussourd and Hoyle, 2000). Apart from its 

stickiness, A. cannabinum also has toxic or antinutrive properties due to its complex composition of specialized bioactive 

natural products, such as alkaloids, terpenoids, phenolics and protein inhibitors (Mithöfer and Boland, 2012).  

2.1.1.3. plant colour  

Plant colour affects host selection behaviour of insect pests (Norris and Kogan, 1980). Although plant shape may have 

some effect on insect orientation the most important remote factor is plant colour.The attraction of aphids to yellow 

reflecting surfaces (Kennedy et al., 1961) is now well known and has been utilized in the construction of yellow sticky 

traps for monitoring aphid numbers. Yellow is thought to be attractive because it is the colour, or the wavelength of the 

colour, associated with the senescing tissue favoured by aphids. Adult Pieris rapae prefer green and blue green surfaces 

for preovipositional displays (Ilse, 1937), the cabbage aphid Brevicoryne brassicae is less attracted to red Cruciferae (Ellis 

et al., 1996) and the boll weevil is attracted less to red cotton plants than  green (Stephens, 1957). The work of Prokopy et 

al. (1983) has shown the importance of the leaf colour for the visual selection of plants by Delia radicum. More females 

landed on mimics coloured as radish leaves than on green or red mimics of cabbage. Although these differences in 

preference occur, it is debatable whether such characters can be used as a mechanism of resistance since it is unlikely that 

the resistant effect of colour will persist in the absence of hosts having a preferred colour. Also little can be done by way 

of genetic manipulation to affect plant colour without affecting some fundamental physiological plant process (Norris and 

Kogan, 1980).  

2.1.1.4. accumulation of minerals in plant cuticle 

Resistance of plants against insect pests can be attributed to the accumulation of certain minerals in plant cuticles that can 

act as feeding barrier (Pathak, 1969). For example, deposits of silica and calcium carbonate were found in a number of 

plant species (Martin and Juniper, 1970). Calcified and silicified hairs exist on many plants (Uphof, 1962). Silica contents 

absorbed by the plants get deposited in the tissues of several plant species and in certain species contribute to resistance 

against insect attack (Lanning et al., 1980). For instance, it has been found that resistance in sorghum cultivars against 

shoot fly (atherigona soccata) was because of the presence of high silica content in 4-6 leaf stage (Bothe and Pokarhar, 

1985). Hanifa et al, (1974) showed that there was strong resistance in rice cultivars against stripe stem borer (chilo 

suppressalis) owing to silica content of the stem of the cultivars and Ukwangwa and Odebiyi, (1985) also reported that 

the same result was found against chilo zacconius. Likewise, it has been observed that in rice, a highly significant 

negative correlation was recorded between silica content of the stem and the susceptibility to the stripe stem borer (Chilo 

suppressalis (Hanifa et al., 1974) and Chilo zacconius) (Ukwangwa and Odebiyi, 1985). Similarly, Mandras (1991) 

reported that susceptibility in rice cultivars to yellow stem borer (Scirpophaga incertulas) was seenbecause of lack of 

silica in their stems. It has also been observed that young cuticle is usually preferred over mature cuticle by certain species 

of insect pests for feeding and oviposition. Forexample, bayberry whitefly (Parabemisia myricae) could not feed on 

mature lemon leaves due to inhibitory properties of mature cuticle (Walker, 1988) and it has also been proved that mature 

leaves of citrus were repellent to probing by aphids (Zettler et al., 1969). Correspondingly, younger leaves of lemon were 

preferred for probing, oviposition and survival of P. myricae over mature leaves (Walker and Aitken, 1985).  

2.1.1.5. mimicry and camouflage  

Mimicry refers to adaptive similarity between a mimic organism and a model. Camouflage is used by organisms to 

disguise their appearance which blends with their surroundings. Organisms use camouflage to mask their location, 

identity and movement. This allows prey to avoid predators, and for predators to sneak up on prey.  The woody vine 

Boquila trifoliolata mimics the leaves of its supporting trees in terms of size, shape, color, orientation, petiole length, and 

tip spininess to escape the attack of some weevils and leaf beetles (Gianoli and Carrasco-Urra 2014). The bracts of a 

woodland plant Monotropsis odorata functioned as camouflage, making the plant blend in with its surroundings avoiding 

herbivores. These are brown colored that resembles the leaf litter from which cover the pinkish-purple colored buds and 

deep purple stems (Hund 2017).  Heliconiines larvae are important defoliating agents of Passiflora spp. A number of 

Passiflora species have several distinct structures on their leaves. These structures mimic the presence of Heliconius 
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butterflies yellow eggs on their leaves. Female butterflies are less likely to lay their eggs on plants that already have 

butterfly eggs. This is due to fact that larvae of many Heliconius feed on congeneric eggs and larvae and females exhibit 

great care in inspecting oviposition sites (Williams and Gilbert 1981). 

2.1.2. Biochemical defense mechanisms 

Plants produce biochemical compounds called primary and secondary metabolites. The primary metabolites are used for 

growth, development and reproduction whereas secondary metabolites are used to protect the plant against herbivory and 

pathogens (Engelberth, 2006). They can perform as repellents for generalist insects and as attractants for specialist insects 

(Fraenkel, 1959). Toxic compounds will intoxicate generalist herbivores, while specialists are forced to invest resources 

in detoxification mechanisms, and their growth and development will therefore slow down (Kessler and Baldwin, 2002).  

2.1.2.1. alkaloids 

Alkaloids are heterogeneous biochemicals that occur in all living organisms but are most common in plants (Levin, 1976). 

Theyare widely distributed in vascular plants and are commonly found in the leguminosae, liliaceae, solanaceae, and 

amaryllidaceae species and they maybe evolved as defense against insect herbivory (Howe andJander, 2008). The true 

alkaloids are biosynthesized from amino acids in the roots,followed by phloem and usually xylem transports(Courdavault 

et al., 2014) and accumulated above ground. Alternatively, the final steps of their de novo biosynthesis can take place 

above ground (Miettinen et al., 2014). Alkaloids are constitutively present in plants, but their production and transport can 

increase upon herbivory (Baldwin, 1988). They can react with DNA, membranes and enzymes, and are therefore potent 

toxins for many organisms, including arthropods (Wink et al., 1998). Interestingly, the nectar of some plants contains sub-

lethal amounts of alkaloids, which not only protects them from nectar robbers (Kessler et al., 2008), but also improves 

their reproductive success by manipulating the behaviour of their natural pollinators (Kessler et al., 2012a). They contain 

nitrogen in a heterocyclic ring. The ring structure includes pyridines, pyrroles, indoles, pyrrolidines, isoquinolines and 

piperidines (Fattorusso and Taglialatela-Scafati, 2007). Alkaloids derived from quinolizidine, such as cytisine and 

sparteine, are efficient feeding deterrents against a number of herbivores (Petterson et al.,1991).  

Pyrrolizidine alkaloids are derived from ornithine or arginine and occur naturally in many plants as non-toxic N-oxides. 

However, as soon as they reach the often alkaline digestive tracts of some insect herbivores, they are quickly reduced and 

forms toxic, uncharged, hydrophobic tertiary alkaloids, which can easily pass through membranes (Hartmann, 1999). 

Furthermore, pyrrolizidine alkaloids were found to be very potent antifeedants and extremely toxic to the aphid 

Rhopalosiphum padi and the Milkweed bug Oncopeltus fasciatus.  

2.1.2.2. benzoxazinoides 

Grammeae spp., such as maize, rye and wheat, produces the defense-related secondary metabolites 2,4-dihydroxy-1,4-

benzoxazin-3-one-glucoside (DIBOA-Glc) and dihydroxy-7-methoxy- 1,4-benzoxazin-3-one-glucoside (DIMBOA-Glc, 

Figure 8b) from indole-3-glycerol phosphate. The conversion is catalyzed by BX1-BX9, of which BX1 cleaves off the 

glycerol phosphate, BX2-BX5 (cytochrome P450s CYP79C1-4) catalyze the reactions forming DIBOA, BX8/BX9 add 

the stabilizing glucosyl group, and BX6-BX7 assists in the conversion from DIBOA-Glc to DIMBOA-Glc (Dutartre et al., 

2012). 

A homologue to BX1, indole-3-glycerol phosphatase lyase (Seigler, 1991) catalyzes the formation of free indoles in 

maize, and is activated by volicitin (Frey et al., 2000). DIMBOA has been shown to confer resistance to Ostrinia nubilalis 

(first-brood European corn borer), northern corn leaf blight Helminthosporium turcicum (Helminthosporium turcicum), 

and maize plant louse(Rhophalosiphum maydis) (Niemeyer, 1988). However, DIBOA and DIMBOA may also be used as 

feeding cues by specialist herbivores. D. virgifera is attracted to DIMBOA (Robert et al., 2012) as well as one of its 

degradation products MBOA (Bjostad and Hibbard, 1992). DIMBOA-Glc may be further converted into 2-β-D-

glucopyranosyloxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA-Glc) through the action of a JA induced 4-O-

methyltransferase (Oikawa et al., 2002 ). Interestingly, HDMBOA that is formed following deglycosylation by β-

glycosidase acts as a strong deterrent to both the generalist S. frugiperda and the specialist S. littoralis (Glauser et al., 

2011). 
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2.1.2.3. cyanogenic glucosides 

The cyanogenic glucosides (CNglcs), are found in more than 2600 species from more than 550 genera and 150 families, 

covering all vascular plant classes including angiosperms, both monocotyledons and dicotyledons, as well as 

gymnosperms and pteridophytes (Seigler, 1991; Orcutt and Nilsen, 2000; Lindberg Møller, 2011). CNglcs are amino acid 

derived glucosides, originating from aromatic or branched-chain amino acids, such as tyrosine (dhurrin in Sorghum 

bicolor, sorghum ( Dustan and Henry, 1902), valine and isoleucine (linamarin and lotaustralin in Lotus japonicus (lotus) 

and Manihot esculenta (cassava) (Forslund et al., 2004; McMahon, 1995) and phenylalanine (amygdalin and prunasin in 

Rosaceae), the rose family, including apples, plums, cherries, peaches and strawberries (Sánchez-Pérez et al., 2008).  

Many plant species accumulate cyanogenic glucosides (ahydroxynitrile glucosides) which protect them against herbivores 

because they can release volatile hydrogen cyanide (HCN), which inhibits cellular respiration (Brattsten, 1983; Way, 

1984). Because plants are vulnerable to high concentrations of HCN as well, cyanogenic glucosides are stored in 

vacuoles, whereas the HCN-liberating enzymes b-glucosidase and a-hydroxynitrile lyase are localized in plastids. (Vetter, 

2000; Thayer and Conn, 1981), the apoplast (Frehner and Conn, 1987) or in intracellular protein bodies (Swain et al., 

1992). Upon herbivory, the cyanogenic glucosides become exposed to b-glucosidases. Depending on the pH, the resulting 

a-hydroxynitriles will either dissociate spontaneously into HCN or will be enzymatically converted to it by a-

hydroxynitrile lyases (Siritunga et al., 2004). Other roles proposed for CNglcs are as nitrogen storage compounds 

(Forslund and Jonsson, 1997) or as osmoprotectants (Kamp Busk and Lindberg Møller, 2002). The presence of CNglcs in 

M. esculenta tubers increases resistance towards the generalist cassava burrower bug(Cyrtomenus bergi) (Bellotti and 

Arias, 1992). Furthermore, bitter almond plants containing amygdalin and prunasin are resistant to the larvae of 

flatheaded woodborer(Capnodis tenebronis) (Malagón and Garrido, 1990). Another example is the larvae of alfalfa 

weevil(Hypera postica), which prefer feeding on the acyanogenic leaves of Trifolium repens (Ellsbury, et al., 1992). It is 

also known that CNglcs may act as phagostimulants or oviposition cues for specialist herbivores.  

2.1.2.4. glucosinolates 

Glucosinolates (GSL) are derived from amino acids Hopkins et al., 2009) and thus, they are sulphur and nitrogen 

containing defensive metabolites found extensively in Brassicaceae and Capparales (Halkier and Gershenzon, 2006). 

GSL are more abundant in roots than shoots. Indol-3-ylglucosinolate is most dominant in shoots, while its 

methoxyderivatives and aromatic 2-phenylethyl GSL is the major GSL in roots. This tissue specificity is believed to be 

due to difference in volatility, stability in soil and membrane permeability (Dam et al., 2009). In roots, the GSL levels are 

mainly constitutive, while they are inducible in shoots, probably a consequence of difference in selection pressure above 

and below ground (Karban et al., 1999). Similarly, CNglcs, the GSL are located in the vacuole (Grob and Matile, 1979) 

where they are protected from thioglucosidases called myrosinases.  Glucosinolates can be activated by the enzyme 

myrosinase (Husebye et al., 2002), from which they are separated by compartmentalization. Herbivory mixes the two 

(Barth and Jander, 2006), thereby triggering the production and release of various reactive hydrolysis products, mainly 

isothiocyanates and nitriles (Bones and Rossiter, 1996), which can be directly toxic and repellent to herbivores (Bennett 

and Wallsgrove, 1994) but also attract specialist herbivores (Beran et al., 2014) and serve as attractants of parasitoids 

(Mumm et al., 2008). Consistently, glucosinolate biosynthesis can be induced by herbivory (Hopkins et al., 2009) and is 

controlled by JA, SA and ethylene (Schweizer et al., 2013). Glucosinolates also appear to contribute to effective chemical 

defenses against a majority of nonadapted phytophagous insects. On the other hand, a small minority of adapted (curcifer-

feeding) insects are able to utilize glucosinolates in host seeking and host recognition behaviour. 

2.1.2.5.   nonprotein amino acids 

Many plants, especially Leguminosae produce high concentrations of toxic non-protein amino acids (D’Mello,1994). 

Both tree and forage legumes contain the arginine analogue canavanine which together with its breakdown product 

canaline is effective substrates for enzymes utilizing arginine and ornithine. For instance, the arginyl-tRNA synthase of 

most organisms cannot distinguish between arginine and canavanine, resulting in incorporation of canavanine into 

proteins, which leads to deleterious effects (Rosenthal, 1991). However, some insects, such as bruchid beetle(Caryedes 

brasiliensis) and curculionid weevil(Sternechus tuberculatus) have an arginyl-tRNA able to distinguish between protein 

and non-protein amino acids (Rosenthal, 1991). Another example is the aromatic amino acid mimosine found in the 

tropical forage legume Leucaena leucocephala. It is usually degraded into toxic dihydroxypyridone (DHP) by ruminant 
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gut bacteria. However, in Central America where L. leucocephala is native, the gut bacteria Synergistes jonesii is capable 

of fully metabolizing mimosine and DHP (Huang et al., 2011). 

2.1.2.6. phenolics 

Among the secondary metabolites, plant phenols constitute one of the most common and widespread group of defensive 

compounds, which play a major role in host plant resistance against herbivores, including insects (Usha and Jyothsna, 

2010). The properties of phenolics are very diverse, some are soluble in organic solutions, some are water-soluble 

carboxyl acids and glycosides, and some, like the condensed tannins, are large insoluble polymers (Engelberth, 2006). 

Phenolics serve as defense compounds by repelling feeding herbivores and inhibiting enzymes, by attracting pollinators 

and fruit dispersers, by absorbing harmful ultraviolet radiation, as mechanical support in the plant, and by reducing the 

growth of nearby competing plants (Cheeke, 1989). Qualitative and quantitative alterations in phenols and elevation in 

activities of oxidative enzyme in response to insect attack is a general phenomenon (Barakat et al., 2010). 

There are a number of examples of phenolics used in defense against insect herbivores. wheat cultivars containing 

phenolics are much less attractive to cereal aphid(Rhopalosiphum padi) (Leszczynski, 1995). Itwas also reported that light 

and nutrient stressed willow plant (Salix dasyclados), containing three times less phenolics than non-stressed plants, were 

significantly more attractive to leaf beetle (Galerucella lineola) compared to the controls (Larsson et al., 1986). 

Furthermore, benzoic acid derived salicylates in Salix leaves halt the growth and development of larvae of oak moth 

(Operophtera brumata) (Ruuhola et al., 2001). Leaves of Fragaria (strawberry) contain catechol based phenolics that 

provide resistance to two-spotted spider mite(Tetranychus urticae) (Luczynski et al., 1990), because the phenolics 

covalently bind to the mites digestive enzymes and inactivate them. 

2.1.2.7. terpenoids 

The most diverse class of bioactive natural products in plants is terpenoids, with approximately40,000 structures. 

Terpenoids are synthesized from acetyl-CoA and play a role in plant defense,can act like active compounds in resin or as 

volatiles, repellents, and toxins, or can modify developmentin herbivores (Aharoni etal., 2005). Another characteristic in 

monoterpenes and sesquiterpenes is its abilityto form essential oils, like limonene in citrus plants; these essential oils have 

repellent andtoxic effects on insects (Cherrett, 1972). Many terpenoids can have synergistic effects upon 

release(Hummelbrunner and Isman, 2001). 

2.1.3. Plant protein defense mechanisms 

Plants can also defend themselves by producing proteins that reduce the nutrient value to the attacking insect or causes 

physical damage to the insect digestive tract. The major classes of such defense proteins are: α-amylase inhibitors, lectins, 

chitinases, polyphenol oxidases and proteinase inhibitors (Falco et al., 2001). 

2.1.3.1. α-amylase inhibitors 

The lectin-like α-amylase inhibitors (α-AI) are found in cereal seeds, such as Triticum spp.(wheat) and Hordeum vulgare 

(barley), and in monocots, such as S. bicolor and Z. mays. The activities of these inhibitors are directed against α-

amylases from animals (including insects) and microorganisms, used for starch breakdown, and seldom affect the plant 

amylases (Falco et al., 2001). Wheat α-AIs can inhibit Tenebrio obscurus (mealworm), Tribolium spp. (flour beetles), 

Sitophilus spp. (wheat weevils) and Oryzaephilus spp. (grain beetles) among other stored-grains insect pests, and provide 

complete protection in transgenic peas towards Bruchus pisorum (pea weevil) (Morton et al., 2000). Α-AI-1 from P. 

vulgaris was tested against 30 agricultural pests, such as insects, mites, gastropods, annelid worms, nematodes, and fungal 

phytopathogens. It was shown to be a very efficient and selective inhibitor against Coleoptera, Diptera and Hymenoptera, 

as well as against annelid worms, but not towards Lepidoptera or Hemiptera (Kluh et al., 2005). Furthermore, transgenic 

P. sativum harboring the cDNA encoding the α-AI of P. vulgaris showed protection against various insect herbivores 

(Schroeder et al.,1995). 

2.1.3.2. chitinases 

Chitin is the major component of the insect cuticle and peritrophic membrane and chitinases are used as a pest 

management tool to degrade peritrophic membrane of insect alimentary canal (Chandrasekaran 2014).Chitinases have 

therefore been proposed to have a role in defense against insect pests (Jouanin et al., 1992). For example, it was reported 
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that development of Colorado potato beetle is inhibited by poplar chitinase in transgenic tomato (Sharma et al 

2011).Indeed, several transgenic plants over expressing chitinases have proved to be resistant against insect herbivores. 

For instance, transgenic S. lycopersicum is resistant to Leptinotarsa decemlineata (Colorado potato beetle) (Lawrence and 

Novak, 2006), transgenic N. tabacum repels M. sexta (Ding et al., 1998), and Lacanobia oleracea (tomato moth) is 

repelled by transgenic S. tuberosum (Gatehouse etal., 1997). 

2.1.3.3. lectins 

One particular class of entomotoxic proteins present in many plant species is the group of carbohydrate binding proteins 

or lectins (Vandenborre 2011). Lectins come into contact with the glycoproteins lining the intestinal area of insect 

inhibiting the absorption of nutrients ((Vandenborre et al., 2011). First lectin to which anti-insect properties were ascribed 

on the basis of its deleterious effect on the larvae of bruchid beetle Callosobruchus((Edelman et al., 1972). One of the 

most important properties of lectins is their survival in the digestive system of herbivores that gives them a strong 

insecticidal potential (Vandenborre et al., 2011). They act as antin-utritive and/or toxic substances by binding to 

membrane glycosyl groups lining the digestive tract, leading to an array of harmful systemic reactions (Chakraborti et al., 

2009; Vandenborre et al., 2011). Lectins have been found to be promising against Homopteran, (Chakraborti et al., 

2009)Lepidopteran and Coleopteran insects(Macedo et al., 2007). For instance, lectin from Phaseolus vulgaris was found 

to have a lethal effect on the bruchid grubs (Liener, 1991). Similarly, the soybean lectins (Phaseolus vulgaris agglutinin 

and arcelin) have been shown to inhibit larval growth of a leaf-defoliating insect, Manduca sexta (C. maculatus) 

(Gatehouse and Gatehouse1998) and bean weevil(Zabrotes subfasciatus) (Osborn et al., 1988). Furthermore, wheat germ 

agglutinin (WGA) from corn inhibits Southern corn rootworm (Diabrotica undecimpunctata howardi) larval growth by at 

least 40% (Czapla and Lang, 1990).  

2.1.3.4. polyphenol oxidases 

Polyphenol oxidases (PPOs) are important enzymes in plants that regulate feeding, growth, and development of insect 

pests, and play a leading role in plant defense against the biotic and abiotic stresses (Heet al., 2011).They are among the 

major enzyme families inducedby wounding due to herbivory (Thaler et al., 1996). Polyphenol oxidases catalysethe 

oxidation of ortho-oriented dihydroxy phenolic compounds, thereby generating quinones, which are highly reactive 

moleculesthat can either spontaneously polymerise or damage proteins,amino acids and nucleic acids via an alkylation 

reaction(Constabel and Barbehenn, 2008). 

PPOs appear frequently upon wounding, and are therefore suggested to play a defensive role. For instance, PPO activity 

has been associated with resistance to L. decemlineata (Castañera et al., 1996), Melanoplus spp. (grasshoppers) (Alba-

Meraz and Choe, 2002) and Lepidopteran larvae (Felton et al 1992a). Similarly, PPOs confer resistance to 

spodopteralitura (fab.), h. armigera, bemisia tabaci (gen.), tetranychuscinnabarinus (boisd.), myzus persicae (sulzer), 

empoasca fabae (harris), aphis medicaginis (koch), s. exigua, and agelastica alni (l.)(Usha and Jyothsna, 2010; He et al., 

2011).PPOs can also be combined with specific phenolic substrates in glandular trichomes to produce a kind of “super 

glue” to trap smaller insects (Falco et al., 2001). Activity of PPOs has been associated with defence againsttherbivores 

such as Coleopterans (Castan˜era et al.,1996) andLepidopterans (Felton et al., 1992a).  

2.1.3.5. proteinase inhibitors 

Proteinase inhibitors (PIs) cover one of the most abundant defensive classes of proteins in plants. Higher concentration of 

PIs occurs in storage organs such as seeds and tubers, and 1 to 10% of their total proteins comprise of PIs, which inhibit 

different types of enzymes and play an important role in plant defense against insect herbivory(Lawrence and Koundal, 

2002;Dunse et al., 2010). Insect proteinases are four in types and used to digest proteins but plant proteinase Inhibitors 

bind to these enzymes in insect gut and inhibit their activity, thereby reduce protein digestion, resulting in the shortage of 

amino acids, and slow development and/or starvation of the insects (Azzouz et al., 2005). The most common are the 

serine proteases, which are found in Coleoptera, Lepidoptera and Orthoptera, which all have neutral or alkaline pH in 

their midgut lumen content. This class is further divided into the subclasses of trypsin-like, chymotrypsin-like, and 

elastase-like proteases. The cysteine and aspartic acid proteases have been identified in families with more acidic gut 

content, such as Coleoptera, Diptera and Hemiptera. The last and by far the smallest class contain the metalloproteinases 

(Rodrigues et al., 2011).  
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Phloem-feeding herbivores do not have digestive proteinases and are instead dependent on free amino acids absorbed 

from the phloem sap as a source of nitrogen nutrients. Plants have inhibitors for all four classes of proteinases, which can 

delay larval development without directly causing mortality (Wolfson and Murdock,1995). They are supposed to inhibit 

the proteolytic activity of midgut enzymes and thereby decrease the availability of amino acids. This in turn leads to 

lessening of the synthesis needed for growth, development and reproduction (Broadway and Duffey, 1986).  

2.2. PLANT INDIRECT DEFENSE MECHANISMS 

The term indirect defense is used when plants attract, nourish or house other organisms to reduce enemy pressure (Dicke 

and Sabelis, 1988). This is done by producing volatiles, extrafloral nectar, food bodies and nesting or refuge sites. Thus, 

indirect defence refers to plant characters that enhance attraction or arrestment of natural enemies of the herbivore, such 

as predators and parasitoids (Sabelis et al., 2001).It plays a pivotal role in protecting plants against herbivore attack. 

(Dudareva et al., 2006; Tibebu, 2018; Abdul et al., 2012). Indirect defenses can be constitutive or induced as a result of 

combined action of mechanical damage and elicitors from the attacking herbivore Abdul et al., 2012. Production of 

volatiles and the secretion of extra floral nectar mediate interactions of plants with natural enemies of the insect pests (i.e., 

parasitoids or predators), which actively reduce the numbers of feeding herbivores ((Dudareva et al., 2006; Maffei, 2010). 

Induced indirect defenses have received increasing attention recently and have been studied on the genetic, biochemical, 

physiological, and ecological levels (Dudareva et al., 2006; Arimura et al., 2009; Maffei, 2010). 

The natural enemies of herbivores use plant odours for locating prey has been suggested several times (Vinson,1976), and 

Dicke and Sabelis (1988) outlined a framework for the mode of action and the evolution of indirect defence strategies, 

mediated by so-called info chemicals, which forms the basis for our current view of the phenomenon. Since then, induced 

indirect defences have been reported for many plant species under laboratory conditions, including Arabidopsis (van 

Poecke et al., 2001), cotton (De Moraes et al., 1998), tomato (Kant et al., 2004) and maize (Schnee et al., 2006). In 1999, 

Thaler showed that indirect defences can act in the field while, in 2001, Kessler and Baldwin showed that plant volatiles 

can establish indirect defences under natural conditions. They supplemented Nicotiana attenuata plants with synthetic 

volatiles and some of these increased the natural predation of herbivore eggs and repelled adult moths. In a later study 

with transgenic plants that were silenced for genes involved in volatile production, the same group showed that indirect 

defences can actually promote a plant’s fitness under natural conditions (Schuman et al., 2012). Moreover, it was found 

that hyperparasitoids also respond to herbivore-induced plant volatiles; volatiles released by plants infested with 

parasitized caterpillars attracted more hyperparasitoids than volatiles emitted by plants infested with healthy caterpillars 

(Poelman et al., 2012). Indirect defence is known to occur below ground as well. A well-known example is the release of 

the volatile b-caryophyllene by maize roots into the soil when attacked by larvae of the beetle Diabrotica virgifera 

virgifera; this compound was shown to function as an attractant for entomopathogenic nematodes that attack the beetle 

larvae (Rasmann et al., 2005). Finally, restoring this function in maize varieties deficient in the release of bcaryophyllene 

from roots also increased attraction of the nematodes (Degenhardt et al., 2009). 

Volatiles are not the only means by which plants can increase the abundance of natural enemies in their vicinity. Natural 

enemies can be arrested by providing them with food, e.g. extrafloral nectar (Pemberton and Lee, 1996) or food bodies 

(Fischer et al., 2002). Also, dead insects entrapped on sticky plants were shown to attract predatory insects such that 

overall herbivore damage decreased and fruit production increased (Krimmel andPearse, 2013). Finally, an alternative 

means by which plants establish indirect defence is to provide shelter (domatia) such as cavities or tufts of hair, for small  

natural enemies, which these can use to moult and/or to protect their eggs (Walter, 1996). 

2.3. ROLE OF PLANT HORMONES IN INDUCED RESISTANCE IN PLANTS. 

Plant defense against herbivore attack involves many signal transduction pathways that are mediated by a network of 

PLANT hormones. Plant hormones play a critical role in regulating plant growth, development, and defense mechanisms 

(Verhage et al., 2010). A number of plant hormones have been implicated in intra- and inter-plant communication in 

plants damaged by herbivores. Most of the plant defense responses against insects are activated by signal transduction 

pathways mediated by JA, SA, and ethylene (Gill et al., 2010). Specific sets of defense related genes are activated by 

these pathways upon wounding or by insect feeding.  
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2.4. REALLOCATION OF RESOURCES IN PLANTS  

Plants accumulate and redistribute nutrients throughout their life cycle. Upon insect attack, they can be reallocated by the 

plant. Nitrogen is exported away from roots of Centaurea maculosa attacked by an insect, Agapeta zoegana. It has been 

reported that infested plants shifted Nitrogen flow to shoots, translocating almost twice as much N to the shoot even as 

root grazing reduced total N uptake by 30–50% (Schultz et al 2013). Another example is the allocation of sugars from 

infested green parts into the non-affected roots, as has been shown for Manduca sexta–infested Nicotiana attenuata 

plants. Thus, at the necessary time,all rescued material can easily be remobilized and used for building new above ground 

organs (Mithofer and Boland 2012). 

3.   CONCLUSION 

Plants have been interacting with insects for several hundred million years, leading to complex defense approaches 

against various insect feeding strategies. In response to attack, plants have evolved a range of defenses to reduce the threat 

of injury and loss of productivity.The plant defense activated upon herbivory is a complex network of different pathways 

composed of direct and indirect defenses. Plants respond to herbivory through various morphological, biochemicals, and 

molecular mechanisms to counter the effects of herbivore attack. Defense mechanisms may be present constitutively or 

induced after damage by the insect herbivores. However, induced response in plants is one of the important components 

of pest control in agriculture, and has been exploited for regulation of insect herbivore population. Although induced 

responses have some metabolic costs, they are very important when aimed at alleviating the stress of immediate concern, 

as most of these chemicals are produced in response to herbivore attack.The cost on investing in defense can be quantified 

in reduced growth, lower photosynthetic production, and reduced plant fitness. Plant defenses reduce the ability of 

herbivores to obtain nutrients from plant tissue. Plants with diminished defense capability may suffer greater herbivore 

damage and exhibit lower overall fitness under conditions of herbivore stress than well-defended plants. 

Plants lack nervous system like those of animals, but they can readily sense and respond to the insect attack through 

various signalling pathways in its system which further activates the direct and indirect defenses. Direct defenses include 

the production of toxins, digestibility reduction of insect, reallocation of resources in plants and morphological defense 

like waxy layers on plants, trichomes, tissue toughness etc. Moreover, direct defense compounds such as alkaloids, 

benzoxazinoids, glucosinolates, and terpenoids or protease inhibitors directly influence the insect performance and 

feeding behaviour whereas indirect defenses enhance the probability of attracting the natural enemies of herbivores by 

production of volatiles, the secretion of extra floral nectar, providing nesting spaces to the former. Generally plant defense 

mechanisms are very important and shall be exploited for insect pest management in plant protection and can be one of 

the components of integrated pest management. 
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